Numerical Simulation of Shock-Wave/Boundary/Layer Interactions in a Hypersonic Compression Corner Flow

author

Abstract:

Numerical results are presented for the shock-boundary layer interactions in a hypersonic flow over a sharp leading edge compression corner. In this study, a second- order Godunov type scheme based on solving a Generalized Riemann Problem (GRP) at each cell interface is used to solve thin shear layer approximation of laminar Navier-Stokes (N-S) equations. The calculated flow-field shows general agreement with the experimental data. The heat transfer coefficient and the extent of the separation are predicted with an adequate accuracy. Furthermore, the effects of the employed slope-limiter on the present computations are addressed.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Numerical Simulation of Weakly Ionized Hypersonic Flow for Reentry Configurations

Numerical simulations of axisymmetric flows over reentry configurations at hypersonic conditions using a Navier-Stokes solver are presented. The Navier-Stokes equations are modified using Park’s two-temperature model to account for thermochemical nonequilibrium and weak ionization effects. The finite-volume method is used to solve the set of differential equations. The code has the capability t...

full text

Approximate Viscous Shock-Layer Analysis of Axisymmetric Bodies in Perfect Gas Hypersonic Flow

In this paper, an approximate axisymmetric method is developed which can reliably calculate fully viscous hypersonic flow over blunt-nosed bodies. In this method, a Maslen’s second-order pressure expression is used instead of the normal momentum equation. The combination of Maslen’s second-order pressure expression and viscous shock layer equations is developed to accurately and efficiently com...

full text

Numerical Simulation of Bubbly Cavitating Flow in Shock Wave Lithotripsy

The bubbly cavitating flow generated by a lithotriptor is computed using an ensemble averaged two-phase flow model. The time-dependent, compressible flow computation is divided into two separate calculations: the refocusing of a spherical pulse by an ellipsoidal reflector, and the evolution of the steepening wave including the cavitating bubble cloud it generates. The first computation is singl...

full text

A Modified Flux Vector Splitting Scheme for Flow Analysis in Shock Wave Laminar Boundary Layer Interactions

The present work introduces a modified scheme for the solution of compressible 2-D full Navier-Stokes equations, using Flux Vector Splitting method. As a result of this modification, numerical diffusion is reduced. The computer code which is developed based on this algorithm can be used easily and accurately to analyze complex flow fields with discontinuity in properties, in cases such as shock...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 11  issue 4

pages  197- 206

publication date 1998-11-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023